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Abstract
The Langevin dynamics of a d-dimensional mean spherical model with
competing interactions along m � d directions of a hypercubic lattice is
analysed. After a quench at high temperatures, the dynamical behaviour is
characterized by two distinct time scales associated with stationary and ageing
regimes. The asymptotic expressions for the autocorrelation and response
functions, in supercritical, critical and subcritical cases, were calculated.
Ageing effects, which are known to be present in the ferromagnetic version
of this model system, are not affected by the introduction of competing
interactions.

PACS numbers: 05.50.+q, 05.70.Ln, 64.60.−i, 75.10.Hk

1. Introduction

Non-equilibrium phenomena, such as ageing and violations of the fluctuation–dissipation
theorem (FDT), have been attracting the attention of many investigators. A number of
dynamical calculations for disordered as well as uniform magnetic model systems point
out the occurrence of ageing and violations of the FDT in a time evolution from a quench at
high temperatures [1–3]. Since there are no general principles to understand and classify these
dynamical phenomena, it has been valuable to analyse the dynamical behaviour of simple,
analytically tractable, model systems. In the present work, a detailed investigation of the
Langevin dynamics of an analytically tractable d-dimensional mean spherical model with
competing interactions is reported.

Spin models with competing interactions are known to display a rich phase diagram,
with multicritical points and modulated phases. In terms of the temperature T and of a
parameter p gauging the strength of the competing interactions, the phase diagram of the
axial next-nearest-neighbour Ising (or ANNNI [4, 5]) model displays a Lifshitz point, at
the meeting of paramagnetic–ferromagnetic and paramagnetic-modulated critical lines, and
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an impressive sequence of modulated structures at low temperatures. The thermodynamic
behaviour of a spherical version of an Ising model with competing interactions has been
originally analysed by Kalok and Obermair [6]. A spherical analogue of the ANNNI model,
with the characterization of a Lifshitz point and the existence of ordered ferromagnetic and
helical phases, has been introduced by Hornreich and co-workers [7]. The field behaviour of
this spherical analogue of the ANNNI model has been investigated by Yokoi and co-workers
[8]. With the exception of a few numerical works, as the analysis of an Ising model with both
ferromagnetic and antiferromagnetic dipolar interactions in order to account for the behaviour
of ultrathin magnetic films [9], we are not aware of analytical investigations of the dynamics
of statistical models with competing interactions.

In a recent paper, Godrèche and Luck [2] reported a detailed analytical treatment of the
Langevin dynamics of a d-dimensional ferromagnetic mean spherical model. The present work
may be regarded as an extension of this analysis for a mean-spherical model with competing
interactions. The particular results of Godrèche and Luck are recovered.

The layout of this paper is as follows. The spherical model with competing interactions
is introduced in section 2. The Langevin dynamics, with the inclusion of a time-dependent
Lagrange multiplier for implementing the spherical constraint, is analysed in section 3, but the
mathematical details of this analysis are left for the appendix. In section 4, some comments
are made and the main conclusions are presented.

2. Definition of the model

The grand canonical partition function,

�N(β,µ) =
∫

exp

[
−βH({Sx}) − βµ

∑
x∈�N

S2
x

] ∏
x∈�N

dSx, (1)

subjected to a spherical constraint,〈 ∑
x∈�N

S2
x

〉
= − 1

β

∂

∂µ
ln �N(β,µ) = N, (2)

is the trademark of a mean spherical model. The spin variables Sx ∈ R are continuous, β is
the (inverse) temperature, µ is a Lagrange multiplier that canonically ensures the spherical
constraint and �N = {−L,−L + 1, . . . , L, L + 1}d is a hypercubic lattice with N sites. The
Hamilton function is given by

H({Sx}) = −1

2

∑
x,x ′∈�N

Jx,x ′SxSx ′ , (3)

where

Jx,x ′ =




RJ, x − x ′ = ±ei i ∈ {1, . . . , m}
SJ, x − x ′ = ±2ei i ∈ {1, . . . , m}
J, x − x ′ = ±ei i ∈ {m + 1, . . . , d}
0, otherwise.

(4)

This exchange integral describes the whole features of the model. There are nearest- and next-
nearest-neighbour interactions along m (� d) out of the d directions of the hypercubic lattice;
along the remaining d −m directions, there are only ferromagnetic, J > 0, nearest-neighbour
interactions. We assume periodic boundary conditions along each direction (SL+1 = S−L).
Parameters R and S are free, but the scenario of competition takes place for S < 0. In the
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Table 1. Lower and upper critical dimensions.

m �= 0, d − m �= 0 Case 1 |R| + 4S �= 0 dc = 2 d = 4
Case 2 |R| + 4S = 0 dc = 2

2−r
d = 4

2−r

m �= 0, d − m = 0 Case 3 |R| + 4S �= 0 dc = 2 d = 4
Case 4 |R| + 4S = 0 dc = 4 d = 8

m = 0, d − m �= 0 Case 5 × dc = 2 d = 4

particular (ferromagnetic) case analysed by Godrèche and Luck, m = 0. The simple spherical
analogue of the ANNNI model is given by m = 1 (with the parameter p = −S/R gauging
the strength of the competition).

The partition function can be obtained by standard procedures [10]. In the thermodynamic
limit, the spherical constraint leads to the relation

β(µ) =
∫

[−π,π]d

ddk

2(2π)d

1

µ − 1
2 Ĵ (k)

, (5)

where β is written in terms of the Lagrange multiplier µ, and

µ � µc := 1
2 Ĵ (kc) = 1

2 sup
k∈[−π,π]d

{Ĵ (k)}, (6)

where

Ĵ (k) = 2J

[
R

m∑
i=1

cos ki + S

m∑
i=1

cos(2ki) +
d∑

i=m+1

cos ki

]
(7)

is the Fourier transform of the exchange integral. The critical wave vector kc comes from
equation (6). Thus, one can write

kc = (qc, . . . , qc︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
d−m

), (8)

where this point in the first Brillouin zone satisfies condition (6), and is determined by the
parameters R and S. It is easy to see that

qc =



0, R > 0 and S > −R/4
π, R < 0 and S > −R/4
±φ, S < −|R|/4,

(9)

where φ := arccos
(− R

4S

)
.

The sum rule (5), which defines the critical temperature β(µc), also leads to the lower and
upper critical dimensions, dc and d, which are listed in table 1, in terms of d,m and the ratio
r = m/d. Note that it is convenient to introduce and analyse five different cases. Also note
that these ingredients will be sufficient for characterizing the asymptotic dynamical behaviour.

3. The Langevin dynamics

The dynamics is assumed to be governed by the Langevin equation,

∂Sx(t)

∂t
= − δ

δSx(t)

{
H [Sx](t) + µ(t)

∑
x∈�

S2
x (t)

}
+ ξx(t), (10)
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where {ξx(t)} is a set of random variables such that

〈ξx(t)〉 = 0 and 〈ξx(t)ξx ′(t ′)〉 = 2T δx,x ′δ(t − t ′). (11)

In contrast to the static case, the Lagrange multiplier µ is now a function of time, ensuring
the spherical constraint at each time t.

In this work, the calculations are limited to the long-time behaviour of autocorrelations
and response functions. The analysis is restricted to the asymptotic expansions (for large t ′)
of the autocorrelation,

C(t, t ′) := 1

N

∑
x∈�N

〈Sx(t)Sx(t
′)〉 = 1

N

∑
k∈�̂N

Ck(t, t
′), (12)

with t > t ′, where Ck(t, t
′) = 〈Sk(t)S−k(t

′)〉 is a two-time correlation in the Fourier space �̂,
and the response function:

R(t, t ′) := 1

N

∑
x∈�N

δSx(t)

δhx(t ′)

∣∣∣∣
h↓0

= 1

N

∑
k∈�̂N

Rk(t, t
′), (13)

where Rk(t, t
′) = δ〈Sx(t)〉/δhk(t

′), and h is just a small perturbation. According to the
fluctuation–dissipation theorem, in a stationary regime these functions are related by the
expression

X(t, t ′) = T R(t, t ′)
∂t ′C(t, t ′)

= 1. (14)

If X(t, t ′) �= 1 the theorem is violated, which suggests the introduction of an effective
temperature T/X(t, t ′), larger than the heat-bath temperature T, and which is supposed to
gauge a non-stationary behaviour of the system.

In order to calculate the two-time functions, one may first define the functional

ψ[µ](t) := exp

[
4
∫ t

0
µ(t ′) dt ′

]
, (15)

which will be denoted by ψ(t). By solving the differential equation (10) and using the
definition of Ck(t, t

′), one can show that

Ck(t, t
′) = 1√

ψ(t)ψ(t ′)

{
Ck(0, 0) exp[Ĵ (k)(t + t ′)]

+ 2T

∫ t ′

0
exp[Ĵ (k)(t + t ′ − 2t ′′)]ψ(t ′′) dt ′′

}
, (16)

where Ck(0, 0) is the initial condition. For a quench from a totally disordered state, at an
effectively infinite temperature, one should take Ck(0, 0) = 1.

The autocorrelation is obtained from the spherical constraint C(t, t) = 1 (see (12) and
(2)), which implies, in the thermodynamics limit, and for t � 0,

ψ(t) = f (t) + 2T

∫ t

0
f (t − t ′)ψ(t ′) dt ′, (17)

with

f (t) :=
∫

[−π,π]d

ddk

(2π)d
e2Ĵ (k)t = [I0(4J t)]d−m

[
1

π

∫ π

0
e4J tg(k) dk

]m

, (18)

where I0(x) is the modified Bessel function of order zero, and

g(k) := R cos k + S cos(2k) (19)

corresponds to the portion of the exchange integral responsible for the competition (if S < 0).
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Table 2. Kp and γp .

Kp γp

Case 1 2m(8πJ )−
d
2
∣∣g(2)(qc)

∣∣− m
2 d

2

Case 2 (8πJ )−
2d−m

4
( 48

π3

) m
4 �

( 5
4

)m ∣∣g(4)(qc)
∣∣− m

4 2d−m
4

Case 3 2d (8πJ )−
d
2
∣∣g(2)(qc)

∣∣− d
2 d

2

Case 4 (8πJ )−
d
4
( 48

π3

) d
4 �

( 5
4

)d ∣∣g(4)(qc)
∣∣− d

4 d
4

Case 5 (8πJ )−
d
2 d

2

The convolution product in equation (17) suggests a solution by Laplace transform, which
yields

ψ(t) = 1

2π i

∫ σ+i∞

σ−i∞
ds est L[f ](s)

1 − 2TL[f ](s)
, (20)

where σ is larger than any poles of the integrand. The problem is now to determine ψ , since
the autocorrelation,

C(t, t ′) = 1√
ψ(t)ψ(t ′)

[
f

(
t + t ′

2

)
+ 2T

∫ t ′

0
dy f

(
t + t ′

2
− y

)
ψ(y)

]
, (21)

and the response function,

R(t, t ′) = f

(
t − t ′

2

)√
ψ(t ′)
ψ(t)

, (22)

can be both written in terms of ψ .
The asymptotic behaviour of f is

f (t) ∼ Kp

e2Ĵ (kc)t

t γp
, (23)

where p labels the set p = {R, S,m, d}. As it is fully discussed in the appendix, the expressions
for Kp and γp, which are listed in table 2, depend on the four parameters {R, S,m, d}.

The behaviour of ψ for large times demands the asymptotic expansion of L[f ] for small
values of ε := s − 2Ĵ (kc) > 0. With the same notation, r = m/d, and p = {R, S,m, d}, one
can calculate the asymptotic expression

L[f ](s) ∼




Fpgp

ε−αp 0 < d < dc

Fp (− ln ε) d = dc

A1 − Fp|gp|εαp dc < d < d

A1 − Fp (−ε ln ε) d = d

A1 − Fpε d > d,

(24)

with the coefficients given in table 3. Note that g(n) is the nth derivative of g, given by
equation (19), which is different from gp. Also, note that αp = γp − 1.

The next step is the determination of the asymptotic behaviour of ψ . The calculations are
separated in three parts, each of them corresponding to a different temperature regime.
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Table 3. Fp, gp and αp .

Case Fp d

Case 1 × d < 2

2m(8πJ )−1|g(2)(qc)|− m
2 d = 2

αp = d−2
2 2m(8πJ )−

d
2 |g(2)(qc)|− m

2 2 < d < 4

2m(8πJ )−2|g(2)(qc)|− m
2 d = 4

gp = �
( 2−d

2

)
A2 d > 4

Case 2 (8πJ )−
2d−m

4
( 48

π3

) m
4 �

( 5
4

)m |g(4)(qc)|− m
4 d < 4

2−r

(8πJ )−1
( 48

π3

) m
4 �

( 5
4

)m |g(4)(qc)|− m
4 d = 4

2−r

αp = 2d−m−4
4 (8πJ )−

2d−m
4

( 48
π3

) m
4 �

( 5
4

)m ∣∣g(4)(qc)
∣∣− m

4 4
2−r

< d < 8
2−r

(8πJ )−2
( 48

π3

) m
4 �

( 5
4

)m |g(4)(qc)|− m
4 d = 8

2−r

gp = �
( 4−2d+m

4

)
A2 d > 8

2−r

Case 3 2d (8πJ )−
d
2 |g(2)(qc)|− d

2 d < 2
2d (8πJ )−1|g(2)(qc)|−1 d = 2

αp = d−2
2 2d (8πJ )−

d
2 |g(2)(qc)|− d

2 2 < d < 4
2d (8πJ )−2|g(2)(qc)|−2 d = 4

gp = �
( 2−d

2

)
A2 d > 4

Case 4 (8πJ )−
d
4
( 48

π3

) d
4 �

( 5
4

)d |g(4)(qc)|− d
4 d < 4

(8πJ )−1
( 48

π3

)
�

( 5
4

)4 |g(4)(qc)|−1 d = 4

αp = d−4
4 (8πJ )−

d
4
( 48

π3

) d
4 �

( 5
4

)d |g(4)(qc)|− d
4 4 < d < 8

(8πJ )−2
( 48

π3

)2
�

( 5
4

)8 |g(4)(qc)|−2 d = 8

gp = �
( 4−d

4

)
A2 d > 8

Case 5 (8πJ )−
d
2 d < 2

(8πJ )−1 d = 2

αp = d−2
2 (8πJ )−

d
2 2 < d < 4

(8πJ )−2 d = 4
gp = �

( 2−d
2

)
A2 d > 4

3.1. Supercritical dynamics

If a system is quenched from a highly disordered state (for instance, the system may have
an effectively infinite temperature) to T > Tc, the function ψ has an asymptotic exponential
behaviour

ψ(t) ∼ et/τp , (25)

where τp is related to the characteristic time. This behaviour indicates the decay of the system
to an equilibrium state in finite time. In this situation the autocorrelation,

C(t, t ′) ∼ C(τ) = T

∫ ∞

τ

dy f
(y

2

)
e− y

2τp , (26)

and the response function,

R(t, t ′) ∼ R(τ) = f
(τ

2

)
e− τ

2τp , (27)

depend on the time difference τ only, and the fluctuation–dissipation theorem is satisfied,

X(t, t ′) ∼ 1. (28)
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3.2. Critical dynamics

In contrast to the other cases, the critical dynamical behaviour depends on the dimension of
the system. In the following calculations, it will always be assumed that d is larger than the
lower critical dimension dc, so that Tc �= 0; in other words, the occurrence of a phase transition
is assumed.

The asymptotic behaviour of ψ is given by

ψ(t) ∼




e2Ĵ (kc )t

t1−αp
, dc < d < d

e2Ĵ (kc )t

ln t
, d = d

e2Ĵ (kc)t , d > d,

(29)

which is sensitive to the dimension.
Two time scales arise in the analysis of the critical dynamics:

(i) In the stationary regime, 1 ∼ τ 
 t ′, both the autocorrelation,

C(t, t ′) ∼ Ceq,c(τ ), (30)

with

Ceq,c(τ ) := Tc

∫ ∞

τ

dy f
(y

2

)
e−Ĵ (kc)y, (31)

and the response function,

R(t, t ′) ∼ f
(τ

2

)
e−Ĵ (kc)τ , (32)

are invariant under time translation. The fluctuation–dissipation theorem is satisfied with
X(t, t ′) ∼ 1. The choice τ ∼ 1 precludes the system to decay from the stationary state, which
suggests the occurrence of ageing for larger values of τ .
(ii) For 1 
 τ ∼ t ′, it is convenient to define

x := t

t ′
. (33)

In this regime, the autocorrelation,

C(t, t ′) ∼




2KpTc2γp

γp−1 t ′
1−γp x

1− γp
2 (x−1)1−γp

x+1 , dc < d < d

TcKp2γp

γp−1 t ′
1−γp

√
1 + ln x

ln t ′ ×
× [(x − 1)1−γp − (x + 1)1−γp ], d = d

2γp KpTc

γp−1 t ′
1−γp [(x − 1)1−γp − (x + 1)1−γp ], d > d,

(34)

and the response function,

R(t, t ′) ∼




2γpKpt ′
−γp

x
1−αp

2 (x − 1)−γp , dc < d < d

2γpKpt ′
−γp

(x − 1)−γp

√
1 + ln x

ln t ′ , d = d

2γpKpt ′
−γp

(x − 1)−γp , d > d,

(35)

show that the time translation invariance is broken, and ageing effects are observed.
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The asymptotic behaviour of the fluctuation–dissipation ratio is calculated from
equations (34) and (35), which yield

X(t, t ′) ∼




(γp−1)(x+1)2

(γpx+γp−2)(x+1)−2(x−1)
, dc < d < d

2(γp−1) ln t ′

2(γp−1)
[

1+( x−1
x+1 )

γp
]

ln t ′−(x−1)

[
1−( x−1

x+1 )
γp−1

] , d = d

1
1+( x−1

x+1 )
γp , d > d.

(36)

Note that x ∼ 1 is the stationary limit, and X(t, t ′) ∼ 1 in this case.

3.3. Subcritical dynamics

Again, the occurrence of a phase transition is required, and the calculations are performed for
d > dc. The asymptotic behaviour of ψ is given by

ψ(t) ∼ f (t)

M4
eq

, (37)

where

M2
eq := 1 − T

Tc

(38)

is the square of the static magnetization.
In the stationary regime, 1 ∼ τ 
 t ′, the autocorrelation,

C(t, t ′) ∼ M2
eq +

(
1 − M2

eq

)
Ceq,c(τ ), (39)

and the response function,

R(t, t ′) ∼ f
(τ

2

)
e−Ĵ (kc)τ , (40)

depend on τ , and the fluctuation–dissipation theorem is asymptotically satisfied.
In the ageing time scale, 1 
 τ ∼ t ′, the autocorrelation,

C(t, t ′) ∼ M2
eq

[
4x

(x + 1)2

] γp

2

, (41)

and the response function,

R(t, t ′) ∼ Kp2γp t ′
−γp

x
γp

2 (x − 1)−γp , (42)

are not invariant under time translation. One may calculate

lim
τ→∞ lim

t ′→∞
C(t, t ′) = M2

eq = 1 − T

Tc

, (43)

which is analogous to the Edwards–Anderson order parameter. This is a connection between
the two time scales, and one can also interpolate the autocorrelation as

C(t, t ′) ∼ (
1 − M2

eq

)
Ceq,c(τ ) + M2

eq

[
4x

(x + 1)2

] γp

2

. (44)

The fluctuation–dissipation ratio is

X(t, t ′) ∼ 2T Kp

γpM2
eq

t ′
1−γp

(
x + 1

x − 1

)1+γp

. (45)
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4. Conclusions

In this work, the Langevin dynamics of a d-dimensional mean spherical model on a hypercubic
lattice with nearest-neighbour (J and RJ ) interactions and the addition of extra next-nearest-
neighbour (SJ ) interactions along m � d directions was analysed. For S < 0 there is a
scenario of competition between ferromagnetic and antiferromagnetic interactions, with the
occurrence of an ordered modulated region in the phase diagram (in terms of the temperature
T of the heat bath and the competition parameter p = −S/R). The asymptotic expressions
(for large values of time t ′) for the autocorrelation, C(t, t ′), and the response function,
R(t, t ′), with t > t ′, were obtained, and the validity of the fluctuation–dissipation ratio,
X(t, t ′) = T R(t, t ′)/∂t ′C(t, t ′), was checked.

The addition of competing interactions does not change the qualitative dynamical
behaviour as compared to the ferromagnetic case (case 5 in this work), which has been
analysed in detail by Godrèche and Luck [2]. The supercritical dynamics is trivial. The
asymptotic forms of the two-time functions are translational invariant, X(t, t ′) ∼ 1, and the
system reaches equilibrium in a finite time. In the critical and subcritical cases, one is led
to consider two distinct natural time scales: (i) for 1 ∼ τ 
 t ′, the two-time functions
depend on the difference τ = t − t ′ only, and the fluctuation–dissipation theorem holds; (ii) if
1 
 τ ∼ t ′, in general both the autocorrelation and the response function1 depend on t and t ′

(instead of depending on τ only). This lack of translational invariance leads to violations of
the fluctuation–dissipation theorem, and to a system that ages with time.
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Appendix A

The simple ferromagnetic model (case 5 in the classification of this work) is used in order
to give a detailed account of the calculations. Results for the other cases can be obtained by
analogous manipulations.

Lower critical dimension

The lower critical dimension, dc, is established by the spherical constraint (5) at the critical
value µ = µc,

Ĵ (kc) − Ĵ (k) = J

[
c2

m∑
i=1

(ki − qc)
2 +

d∑
i=m+1

k2
i

]
− Jc3

3

m∑
i=1

(ki − qc)
3

+
J

12

[
c4

m∑
i=1

(ki − qc)
4 +

d∑
i=m+1

k4
i

]
+ · · · , (A.1)

where c2 := R cos qc + 4S cos(2qc), c3 := R sin qc + 8S sin(2qc) and c4 := −R cos qc −
16S cos(2qc). It is easy to see that c2 � 0, and c2 = 0 if and only if R +4S = 0 (corresponding

1 Except the response function in critical dynamics for d > d.
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to qc = 0) and R − 4S = 0 (corresponding to qc = π ). In these cases c3 also vanishes and
therefore the fourth-order term becomes relevant to characterize the critical behaviour.

For the fifth case, the (inverse) critical temperature is

β(µc) = 1

J

∫
Bδ

ddk

(2π)d

1∑d
i=1 k2

i + O(δ3)
+
∫

�̂\Bδ

ddk

(2π)d

1

Ĵ (kc) − Ĵ (k)

= 1

J

∫
Bδ

ddk

(2π)d

1∑d
i=1 k2

i

+ O(δ)

= 1

J

2π
d
2

�
(

d
2

) ∫ δ

0

dkkd−3

(2π)d
+ O(δ), (A.2)

where Bδ is an open ball of radius δ centred at (0, . . . , 0), and in the last step the (hyper)
spherical coordinates were invoked. The integral converges for d > 2, establishing dc = 2.
In this work, h = O(x) means that h is of order x or less than it; by h = o(x), it means that h
is of order less than x.

Initial conditions

From equation (12), the autocorrelation in Fourier space at t = t ′ = 0 is given by

Ck(0, 0) = 1

N

∑
x,x ′∈�N

〈Sx(0)Sx ′(0)〉 eik(x−x ′), (A.3)

where

〈Sx(0)Sx ′(0)〉 =
{〈Sx(0)〉〈Sx ′(0)〉, x �= x ′〈

S2
x (0)

〉
, x = x ′ (A.4)

for an ‘infinite temperature’ condition. In this highly disordered situation, from the spherical
constraint C(t, t) = 1 at t = 0, one has

N =
∑
x∈�N

〈
S2

x (0)
〉

= N
〈
S2

x (0)
〉
, (A.5)

from which
〈
S2

x (0)
〉 = 1.

Therefore, 〈Sx(0)Sx ′(0)〉 = δx,x ′ , which yields Ck(0, 0) = 1.

Asymptotic behaviour of f

For large t, and choosing δ 
 1 such that t−1/2 
 δ 
 t−1/4, one shows that (case 5)

f (t) =
[

1

π

∫ π

0
dk e4J t cos k

]d

=
[

1

π

∫ δ

0
dk e4J t (1− k2

2 +O(δ4)) +
1

π

∫ π

δ

dk e4J t cos k

]d

=
[

e4J t

π

∫ δ

0
dk e−2J tk2

(1 + O(tδ4)) +
1

π

∫ π

δ

dk e4J t cos k

]d

=
[

e4J t

π

1√
2J t

√
π

2
(erf(

√
2J tδ) + O(t3/2δ4)) + O(e4J t cos δ)

]d

∼ e4Jdt

(8πJ t)
d
2

. (A.6)
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In general, one has equation (23) with Kp and γp given in table 2.

Asymptotic behaviour of L[f ](s)

One should consider

L[f ](s) =
∫

[−π,π]d

ddk

(2π)d

1

ε + 2Ĵ (kc) − 2Ĵ (k)
, (A.7)

where ε := s − 2Ĵ (kc) > 0, and recall that kc = 0 and 2Ĵ (k) = 4J
∑d

i=1 cos ki in case 5. In
order to obtain the Laplace transform of f in the vicinity of 2Ĵ (kc) (or ε ∼ 0), and using the
same notation as in equation (A.2), this expression is rewritten in the form

L[f ](s) =
∫

Bδ

ddk

(2π)d

1

ε + 2Ĵ (kc) − [
2Ĵ (kc) − 2J

∑d
i=1 k2

i + O(δ4)
]

+
∫

[−π,π]d\Bδ

ddk

(2π)d

1

ε + 2Ĵ (kc) − 2Ĵ (k)
. (A.8)

Changing the first term of (A.8) to (hyper) spherical coordinates, and since the second
term is analytic in ε, it is possible to write

L[f ](s) = ε
d−2

2

(8πJ)
d
2 �

(
d
2

) ∫ 2Jδ2

ε

0

dk k
d
2 −1

k + 1
+ O(δ2) +

∞∑
j=1

(−1)j−1A′
j ε

j−1, (A.9)

where

A′
j :=

∫
[−π,π]d\Bδ

ddk

(2π)d

1

[2Ĵ (kc) − 2Ĵ (k)]j
. (A.10)

Also, define

Aj :=
∫

[−π,π]d

ddk

(2π)d

1

[2Ĵ (kc) − 2Ĵ (k)]j
. (A.11)

From equation (5), it is easily seen that A1 = 1
2Tc

.

Let d = 2q. For even dimensions, and choosing ε 
 δ2 
 1 such that ε ln δ 
 δ2 and
δ2 
 |ε ln ε| (a possible choice is given by δ2 = ε

√| ln ε ln δ|), the integral in equation (A.9)
is

εq−1
∫ 2Jδ2

ε

0

dk kq−1

k + 1
= εq−1

∫ 1+ 2Jδ2

ε

1

du

u

q−1∑
m=0

(
q − 1

m

)
(−1)q−1−mum

=



− ln ε + O(ln δ2), q = 1 (d = 2)

ε ln ε + O(δ2), q = 2 (d = 4)

(−1)qεq−1 ln ε + O(δ2(q−1)), q > 2 (d > 4).

(A.12)

On the other hand, for non-even dimensions d ∈ (0, 2), one sees that∫ 2Jδ2

ε

0

dk k
d
2 −1

k + 1
= �

(
d

2

)
�

(
1 − d

2

)
−

∫ ∞

2Jδ2
ε

dk k
d
2 −1

k + 1

= �

(
d

2

)
�

(
1 − d

2

)
+ O

([ ε

δ2

]|1−d/2|)
. (A.13)

An analytic continuation from (0, 2) to R\Z using the functional equation (A.13) leads to∫ 2Jδ2

ε

0

dk k
d
2 −1

k + 1
∼ �

(
d

2

)
�

(
1 − d

2

)
, d ∈ R\Z. (A.14)
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Therefore,

L[f ](s) =
∞∑

j=1

(−1)j−1A′
j ε

j−1 + O(δ2)

+




(8πJ)−
d
2 �

(
1 − d

2

)
ε− 2−d

2 + O(δ−(2−d)), d < 2

(8πJ)−1 (− ln ε) + O(ln δ2), d = 2

(8πJ)−
d
2 �

(
1 − d

2

)
ε

d−2
2 + O(δd−2), 2 < d < 4

(8πJ)−2ε ln ε + O(δ2), d = 4

O(δ2), d > 4.

(A.15)

One should now analyse the behaviour of
∑∞

j=1(−1)j−1A′
j ε

j−1 for ε ∼ 0. First, note
that Aj (equation (A.11)) is finite for d > 2j . In this case

A′
j = Aj −

∫
Bδ

ddk

(2π)d

1

[2Ĵ (kc) − 2Ĵ (k)]j

= Aj − 2π
d
2

(2π)d�
(

d
2

)
(2J )j

∫ δ

0
dk kd−1−2j + O(δ2)

= Aj + O(δd−2j ) + O(δ2). (A.16)

For d � 2j the integral Aj diverges, and one should evaluate the asymptotic behaviour
of εj−1A′

j to add to (A.15) and, therefore, characterize L[f ](s) for s ∼ 2Ĵ (kc) (or ε ∼ 0).

Using cos x � 1 − x2

π2 for x ∈ [0, π ] ⊂ R,

|εj−1A′
j | �

∣∣∣∣∣∣∣ε
j−1

∫
Bδ

ddk

(2π)d

1[
4Jd − 4J

(
d − ∑d

i=1
k2
i

π2

)]j
+ O(δ2)

∣∣∣∣∣∣∣
� εj−1(

4π−2J
)j

(2π)d

2π
d
2

�
(

d
2

)
∣∣∣∣∣
∫ π

√
d

δ

dk kd−1−2j

∣∣∣∣∣ + O(δ2)

�




2πj

(4π−2J)
j
(2π)2j �(j)

εj−1 |ln δ| + O(εj−1) + O(δ2), d = 2j

2π
d
2 (2π)−d δd−2

(4π−2J)
j
�( d

2 )(2j−d)

(
ε
δ2

)j−1
+ O(εj−1) + O(δ2), d < 2j.

(A.17)

Therefore,

∞∑
j=1

A′
j ε

j−1 =




O(δ−(2−d)), d < 2
O(− ln δ2), d = 2
A1 + O(δd−2), 2 < d < 4
A1 + O(δ2), d = 4
A1 − A2ε + O(δd−4), d > 4.

(A.18)

Combining equations (A.15) and (A.18),

L[f ](s) ∼




(8πJ)−
d
2 �

(
1 − d

2

)
ε− 2−d

2 , d < 2
(8πJ)−1 (− ln ε) , d = 2

A1 − (8πJ)−
d
2

∣∣� (
1 − d

2

)∣∣ ε d−2
2 , 2 < d < 4

A1 − (8πJ)−2 (−ε ln ε) , d = 4
A1 − A2ε, d > 4.

(A.19)
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A

BC

D

Figure A1. Contour for the integration—supercritical case.

Asymptotic behaviour of ψ—general comments

In this section the asymptotic behaviour of ψ ,

ψ(t) = 1

2π i

∫ σ+i∞

σ−i∞
ds estL[ψ](s), L[ψ](s) = L[f ](s)

1 − 2TL[f ](s)
, (A.20)

where σ is larger than the real part of any pole of the integrand, will be evaluated. First, one
should note that the Laplace transform of f ,

L[f ](s) =
∫

[−π,π]d

ddk

(2π)d

1

s − 2Ĵ (k)
, (A.21)

has a cut on [infk∈[−π,π]d {2Ĵ (k)}, 2Ĵ (kc)] in the complex s-plane. Furthermore, L[f ] is a
monotonically decreasing function of s, ranging from 0 to βc/2 (βc/2 being infinite in the
absence of phase transition).

Asymptotic behaviour of the ψ-supercritical case

Let P := {y ∈ C : y is pole of estL[ψ](s)} and let p := supy∈P {Re y}. By the monotonicity
of L[f ](s), the denominator of L[ψ](s) (see (A.20)) runs the interval

[
1 − T

Tc
, 1

]
reaching

each point only one time. Therefore, in the supercritical dynamics, T > Tc, equation (A.20)
has a single pole, denoted henceforth by τ−1

p .
By the residue theorem, choosing the contour indicated in figure A1, where ABCD is a

rectangle with vertices c ± iR and σ ± iR such that 2Ĵ (kc) < c < p < σ ,

2π i Res estL[ψ](s) =
∫ σ+iR

σ−iR
ds estL[ψ](s) + eiRt

∫ c

σ

dy eytL[ψ](y + iR)

+ i ect

∫ −R

R

dy eiytL[ψ](c + iy) + e−iRt

∫ σ

c

dy eytL[ψ](y − iR). (A.22)

It is easy to see that limR→∞ |L[ψ](y ± iR)| = 0. Moreover, the third term is O(ect ),
which is negligible as compared with the first one (equal to 2π iψ(t) in the limit R → ∞),
that is O(eσ t ). Therefore,

ψ(t) ∼ Res estL[ψ](s) = − 1

4T 2

1

∂sL[ψ]
(
τ−1
p

)e
t

τp . (A.23)
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As the temperature gets close to Tc (from above), τ−1
p becomes closer to 2Ĵ (kc) (hitting

this point at Tc), which is one of the edges of the cut in the complex s-plane. Hence, in the
vicinity of Tc, one has

Res estL[ψ](s) ∼ lim
s∼2Ĵ (kc)+

[s − 2Ĵ (kc)] estL[ψ](s), T ∼ T +
c , (A.24)

and L[ψ] can be replaced by its asymptotic formula

L[ψ](s) ∼




Fpgp

ε−αp −2T Fpgp
, d < dc

Fp(− ln ε)

1−2T Fp(− ln ε)
, d = dc

A1−Fpgpεαp

1−2T A1+2T Fp |gp |εαp , dc < d < d

A1−Fp(−ε ln ε)

1−2T A1+2T Fp(−ε ln ε)
, d = d

A1−A2ε
1−2T A1+2T A2ε

, d > d,

(A.25)

which can be calculated from (24) and (A.20). If these results are inserted in (A.24), one finds

τ−1
p ∼




2Ĵ (kc) + (2T Fpgp)
− 1

αp , d < dc

2Ĵ (kc) + exp
(− 1

2T Fp

)
, d = dc

2Ĵ (kc) +
[− 1

2T Fp |gp |
(
1 − T

Tc

)] 1
αp , dc < d < d

2Ĵ (kc) + ε∗, d = d

2Ĵ (kc) +
(− 1

2T A2

)(
1 − T

Tc

)
, d > d,

(A.26)

where ε∗ is the least root of

ε ln ε = 1

2T Fp

(
1 − T

Tc

)
. (A.27)

The characteristic relaxation time, τeq, is related to τp by

τ−1
eq = τ−1

p − 2Ĵ (kc). (A.28)

Asymptotic behaviour of the ψ-critical case

The simple pole of L[ψ](s), which is isolated in the supercritical case, touches 2Ĵ (kc) (one
of the edges of the cut) at T = Tc. Taking the integration contour as in figure A2, it is easy to
show that ∫ σ+iR

σ−iR
ds estL[ψ](s) =

∫
GFEDC

ds estL[ψ](s), (A.29)

since the contribution of the paths BC and GA vanishes in the limit R → ∞.
For sufficiently large time the integral in (A.29) is dominated by the contribution due

to the path FED. Therefore, substituting L[f ](s) by its asymptotic form (24) is a suitable
operation to evaluate the asymptotic form of ψ .

If dc < d < d, one has L[f ](s) ∼ A1 − Fp|gp|εαp . Hence, L[ψ](s) ∼ A2
1

Fp |gp |ε
−αp and

ψ(t) ∼ A2
1

Fp|gp|
1

2π i

∫
GFEDC

ds est
[
s − 2Ĵ (kc)

]−αp
. (A.30)

The integral in (A.30) is a Gamma function with Hankel’s contour. Therefore,

ψ(t) ∼ A2
1

Fp|gp|
tαp−1e2Ĵ (kc)t

�(α)
. (A.31)
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A

B

C D E

F

R

G r
φ

Figure A2. Contour for integration—critical case.

For d = d,L[f ](s) ∼ A1 − Fp(−ε ln ε), and, therefore, L[ψ](s) ∼ − A2
1

Fpε ln ε
. The

integration contour is again the one shown in figure A2. Since the contribution due to the arc
FED is zero (letting its radius to zero), one finds

ψ(t) ∼ − A1

2TcFp

e2Ĵ (kc)t

2π i

[∫ 0

∞

d(r e−iπ ) etr e−iπ

r e−iπ (ln r − iπ)
+
∫ ∞

0

d(r eiπ )etreiπ

r eiπ (ln r + iπ)

]

= A1

2TcFp

e2Ĵ (kc)t

∫ ∞

0

dr e−rt

r
(
ln2 r + π2

) . (A.32)

Adopting the change of variables r → eπr , and integrating by parts, one has

ψ(t) ∼ A1

2TcFp

e2Ĵ (kc)t

π

∫ ∞

−∞

dr exp (−t eπr)

r2 + 1

= A1

2TcFp

e2Ĵ (kc)t

π

{
exp(−t eπr) tan−1 r|∞−∞ + πt

∫ ∞

−∞
dr tan−1 r exp(πr − t eπr)

}

= A1

2TcFp

e2Ĵ (kc)t

π

{
π

2
−

∫ ∞

0
du e−u tan−1

[
1

π
ln

(
t

u

)]}

= A1

2TcFp

e2Ĵ (kc)t

π

{
π

2
−

∫ ∞

0
du e−u

[
π

2
− π

ln
(

t
u

) + O(ln−3 t)

]}

= A1

2TcFp

e2Ĵ (kc)t

ln t

[∫ ∞

0
du

e−u

1 − ln u
ln t

+ O(ln−4 t)

]
. (A.33)

The application e−u
(
1 − ln u

ln t

)−1
, as a function of u, is defined on the interval (0,∞) almost

everywhere, and the integral

A(t) :=
∫ ∞

0
du

e−u

1 − ln u
ln t

(A.34)
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is understood as the Cauchy principal value:

A(t) := v.p.
∫ ∞

0
du

e−u

1 − ln u
ln t

. (A.35)

In the next section it will be demonstrated that limt→∞ A(t) = 1. Using this result, one finds

ψ(t) ∼ A1

2TcFp

e2Ĵ (kc)t

ln t
(A.36)

for d = d.
If d > d,L[f ](s) ∼ A1 − A2ε and L[ψ](s) ∼ A2

1

A2(s−2Ĵ (kc))
. Using again the contour of

figure A2, this leads to

ψ(t) ∼ A2
1

A2

1

2π i

∫
JEFGK

ds
est

s − 2Ĵ (kc)
, (A.37)

with the contribution due to the paths GF and DC being negligible as compared to the one due
to FED. Letting its radius to zero, one sees that

ψ(t) ∼ A2
1

A2
e2Ĵ (kc)t . (A.38)

The results are summarized by

ψ(t) ∼




A2
1

Fp |g|�(αp)
e2Ĵ (kc )t

t1−αp
dc < d < d

A1
2TcFp

e2Ĵ (kc )t

ln t
d = d

A2
1

A2
e2Ĵ (kc)t d > d.

(A.39)

Proof of limt→∞ A(t) = 1

Considering t � e, the integral

A(t) = v.p.
∫ ∞

0
du

e−u

1 − ln u
ln t

= A(1)(t) + A(2)(t) + A(3)(t) (A.40)

is divided into three parts such that

A(1)(t) :=
∫ 1

ln t

0
du

e−u

1 − ln u
ln t

= ln t

∫ 1
ln t

0
du

e−u

ln t + |ln u| . (A.41)

Therefore,

|A(1)(t)| � ln t

ln t + ln ln t

∫ 1
ln t

0
du e−u = ln t

ln t + ln ln t

(
1 − e− 1

ln t

)
= ln t

ln t + ln ln t

[
1

ln t
+ O(ln−2 t)

]
, (A.42)

and limt→∞ A(1)(t) = 0.
The second term, A(2)(t), is responsible for the non-zero contribution of the asymptotic

behaviour of A(t),

A(2)(t) :=
∫ ln t

1
ln t

du
e−u

1 − ln u
ln t

=
∫ ln t

1
ln t

du e−u [1 + o(1)] = e− 1
ln t − e− ln t + o(1); (A.43)

hence, limt→∞ A(2)(t) = 1.
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It remains to show that the third term, A(3)(t), is zero for t → ∞. Separating into three
parts,

A(3)(t) := v.p.
∫ ∞

ln t

du
e−u

1 − ln u
ln t

= A(3a)(t) + A(3b)(t) + A(3c)(t), (A.44)

it will be shown that each of them vanishes in the limit t → ∞.
The first term,

A(3a)(t) :=
∫ t(1− 1

ln t )

ln t

du
e−u

1 − ln u
ln t

= −t ln t

∫ 1− 1
ln t

ln t
t

du
e−tu

ln u
, (A.45)

admits the bound

|A(3a)(t)| � t ln t

∫ 1− 1
ln t

ln t
t

du
e−tu

|ln u| � t ln t∣∣ln (
1 − 1

ln t

)∣∣
∫ 1− 1

ln t

ln t
t

du e−tu

= t ln t∣∣∣ 1
ln t

+ O
(

1
ln2 t

)∣∣∣
1

t

[
1

t
− e−t(1− 1

ln t )
]

, (A.46)

from which limt→∞ A(3a)(t) = 0.
The second term,

A(3b)(t) := v.p.
∫ t(1+ 1

ln t )

t(1− 1
ln t )

du
e−u

1 − ln u
ln t

= −t ln tv.p.
∫ 1+ 1

ln t

1− 1
ln t

du
e−tu

ln u
, (A.47)

can be bounded by

|A(3b)(t)| � t ln tv.p.
∫ 1+ 1

ln t

1− 1
ln t

du
e−tu

|ln u|

� t e−t(1− 1
ln t ) ln t v.p.

∫ 1+ 1
ln t

1− 1
ln t

du
1

|ln u|

= t e−t(1− 1
ln t ) ln t v.p.

∫ 1
ln t

− 1
ln t

du

|ln(1 + u)|

= t e−t(1− 1
ln t ) ln t v.p.

∫ 1
ln t

− 1
ln t

du

|u|
[

1 +
|u|
2

+ O(u2)

]

= t e−t(1− 1
ln t ) ln t

[
1

ln t
+ o(ln−1 t)

]
, (A.48)

and limt→∞ A(3b)(t) = 0.
Finally, the third term,

A(3c)(t) :=
∫ ∞

t(1+ 1
ln t )

du
e−u

1 − ln u
ln t

= −t ln t

∫ ∞

1+ 1
ln t

du
e−tu

ln u
, (A.49)

also goes to zero in the limit t → ∞,

|A(3c)(t)| � t ln t

ln
(
1 + 1

ln t

) ∫ ∞

1+ 1
ln t

du e−tu = t ln t
1

ln t
+ O(ln−2 t)

e−t(1+ 1
ln t )

t
, (A.50)

which implies limt→∞ A(3c)(t) = 0, and completes the proof.
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Asymptotic behaviour of the ψ-subcritical case

In the subcritical case, where L[f ](s) ∼ A1 − h
([

s − 2Ĵ (kc

]
)
)

for s ∼ 2Ĵ (kc), h being a
continuous function for s � 2Ĵ (kc), and h(0) = 0. The form of h is given in (24). It is easily
seen that

L[ψ](s) = 1

M4
eq

L[f ](s) − T A1

M4
eqTc

+ O([h(s − 2Ĵ (kc)]
2), s ∼ 2Ĵ (kc), (A.51)

where

M2
eq := 1 − T

Tc

. (A.52)

In analogy to the manipulations in the critical case, and using the contour given in figure A2,
one finds, for large times, that

ψ(t) = 1

M4
eq

∫
GFEDC

ds estL[f ](s) + O([h(s − 2Ĵ (kc)]
2). (A.53)

The integral in equation (A.53) can be written as

ψ(t) ∼ 1

M4
eq

L−1L[f ](t) = f (t)

M4
eq

. (A.54)

Three auxiliary equations

The following three equations are useful in the calculations of the asymptotic behaviour of the
two-time functions (autocorrelation and response function):

(i)
1

2Tc

=
∫ ∞

0
dt e−2Ĵ (kc)tf (t). (A.55)

This equation is the definition of critical temperature, and it is easily obtained by the definition
of f .

(ii)
1

2T
=

∫ ∞

0
dt e− t

τp f (t) (T > Tc). (A.56)

From equation (A.20), and τ−1
p being the simple pole of L[ψ](s), one has

L[f ](τ−1
p ) = 1

2T
. (A.57)

Therefore, ∫ ∞

0
dt e− t

τp f (t) = lim
s→τ−1

p

∫ ∞

0
dt e−stf (t) = lim

s→τ−1
p

L[f ](s) = 1

2T
, (A.58)

which is the desired result.

(iii)
1

2TcM2
eq

=
∫ ∞

0
dt e−2Ĵ (kc)tψ(t) (T < Tc). (A.59)

For T < Tc, one sees that L[f ](s) ∼ A1 + h(s − 2Ĵ (kc)) for s ∼ 2Ĵ (kc)
+, where h is a

continuous application of s − 2Ĵ (kc), and therefore, h(0) = 0. Hence, by this expansion and
from equation (A.20),

lim
s→2Ĵ (kc)+

∫ ∞

0
dt e−stψ(t) = lim

s→2Ĵ (kc)+
L[ψ](s)

= lim
s→2Ĵ (kc)+

L[f ](s)

1 − 2TL[f ](s)
= A1

1 − 2T A1
. (A.60)

The desired result follows from A1 = 1
2Tc

.
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Autocorrelation, response function and fluctuation–dissipation ratio

The autocorrelation (21),

C(t, t ′) = 1√
ψ(t)ψ(t ′)

[
f

(
t + t ′

2

)
+ 2T

∫ t ′

0
dy f

(
t + t ′

2
− y

)
ψ(y)

]

= 1√
ψ(t ′ + τ)ψ(t ′)

[
f

(
t ′ +

τ

2

)
+ 2T

∫ t ′

0
dy f

(
t ′ − y +

τ

2

)
ψ(y)

]
, (A.61)

the response function,

R(t, t ′) = f
(τ

2

)√
ψ(t ′)
ψ(t)

, (A.62)

and the fluctuation–dissipation ratio,

X(t, t ′) = T R(t, t ′)
∂t ′C(t, t ′)

, (A.63)

display different behaviours, which depend on the temperature and the chosen time scale. The
calculations of these functions will be divided into three parts, each of them corresponding to
different choices of temperature. In each part, distinct time scales, leading to the dynamical
behaviour of the two-time function, will be considered. The notation

x := t

t ′
(A.64)

will be used.
Let ψa be the asymptotic form of ψ . In other words,

ψ(t) ∼ ψa(t) =




D>et/τp , T > Tc

D1= e2Ĵ (kc )t

t2−γp
, T = Tc and dc < d < d

D2= e2Ĵ (kc )t

ln t
, T = Tc and d = d

D3=e2Ĵ (kc)t , T = Tc and d > d

f (t)

M4
eq

, T < Tc.

(A.65)

Choosing an ε > 0 such that 1 
 εt ′ 
 t ′, one can write (A.61) as

C(t, t ′) ∼ 1√
ψa(t)ψa(t ′)

[
Kp eĴ (kc)(2t ′+τ)(

t ′ + τ
2

)γp
+ 2T

∫ εt ′

0
dy

Kp eĴ (kc)(2t ′+τ−2y)(
t ′ + τ

2 − y
)γp

ψ(y)

+ 2T

∫ t ′

εt ′
dyf

(
t ′ +

τ

2
− y

)
ψa(y)

]

= 1√
ψa(t)ψa(t ′)

[
Kp eĴ (kc)(2t ′+τ)(

t ′ + τ
2

)γp
+

2T Kp eĴ (kc)(2t ′+τ)(
t ′ + τ

2

)γp

×
∫ εt ′

0
dy e−2̂Ĵ (kc)yψ(y) + 2T

∫ (1−ε)t ′+ τ
2

τ
2

dy f (y)ψa

(
t ′ +

τ

2
− y

)]
. (A.66)

Since the function w(y) = ψ(y) e−2Ĵ (kc)y is positive and non-increasing (dw(y)/dy � 0) on
the real line, equation (A.66) can be written as

C(t, t ′) ∼ 1√
ψa(t)ψa(t ′)

[
O

(
εt ′eĴ (kc)(2t ′+τ)

(t ′ + τ/2)γp

)
+ 2T

∫ (1−ε)t ′+ τ
2

τ
2

dy f (y)ψa

(
t ′ +

τ

2
− y

)]
.

(A.67)
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Supercritical dynamics

By equations (A.65) and (A.67), one finds

C(t, t ′) ∼ O
(

εt ′e(Ĵ (kc)− 1
2τp

)(2t ′+τ)(
t ′ + τ

2

)γp

)
+ 2T

∫ (1−ε)t ′+τ/2

τ
2

dy f (y) e−y/τp

= O
(

εt ′e(Ĵ (kc)− 1
2τp

)(2t ′+τ)(
t ′ + τ

2

)γp

)
+ 2T

∫ ∞

τ
2

dy f (y) e−y/τp

− 2T

∫ ∞

(1−ε)t ′+τ/2
dy f (y) e−y/τp . (A.68)

In the asymptotic limit t ′ ∼ ∞, the first and third terms are negligible as compared with the
second one, which is O(1) (see (A.56)). Therefore, one has

C(t, t ′) ∼ T

∫ ∞

τ

dy f
(y

2

)
e− y

2τp . (A.69)

By equations (A.23) and (A.62), the response function is

R(t, t ′) ∼ f
(τ

2

)
e− τ

2τp . (A.70)

Using equations (A.69) and (A.70), one checks the fluctuation–dissipation theorem,

X(t, t ′) ∼ Tf
(τ

2

)
e− τ

2τp

[
− ∂

∂τ
T

∫ ∞

τ

dy f
(y

2

)
e− y

2τp

]−1

= 1. (A.71)

Critical dynamics

In the stationary regime (1 ∼ τ 
 t ′), one may rewrite (A.67) as

C(t, t ′) ∼ 1√
ψa(t)ψa(t ′)

[
O

(
εt ′eĴ (kc)(2t ′+τ)(

t ′ + τ
2

)γp

)
+ 2Tc

∫ εt ′+τ/2

τ
2

dy f (y)

×ψa

(
t ′ +

τ

2
− y

)
+ 2Tc

∫ (1−ε)t ′+τ/2

εt ′+τ/2
dy f (y)ψa

(
t ′ +

τ

2
− y

)]
, (A.72)

which may be convenient for calculating the analytic asymptotic form of the autocorrelation
in this regime.

Critical dynamics (dc < d < d). By (A.65) and (A.72), in the stationary regime, one has

C(t, t ′) ∼ [(t ′ + τ)t ′]
2−γp

2

[
O

(
εt ′

(t ′ + τ/2)γp

)
+

2Tc(
t ′ + τ

2

)2−γp

∫ εt ′+τ/2

τ
2

dy

×f (y) e−2Ĵ (kc)y + 2TcKp

∫ (1−ε)t ′+τ/2

εt ′+τ/2

dy

yγp

(
t ′ + τ

2 − y
)2−γp

]
.

Performing the change of variable y → 1/y in the last term, one finds

C(t, t ′) ∼ [(t ′ + τ)t ′]
2−γp

2

[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

1(
t ′ + τ

2

)2−γp
Ceq,c(τ )

]
, (A.73)

where Ceq,c is defined as

Ceq,c(τ ) = Tc

∫ ∞

τ

dy f
(y

2

)
e−Ĵ (kc)y . (A.74)
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Restricting the range of ε > 0 to be such that 1 
 εt ′ 
 (t ′)min{1,2γp−2} leads to

C(t, t ′) ∼ Ceq,c(τ ). (A.75)

Since the response function is

R(t, t ′) ∼ f
(τ

2

)√
e2Ĵ (kc)t ′/t ′1−αp

e2Ĵ (kc)t /t1−αp

= f
(τ

2

) e−Ĵ (kc)τ(
1 + τ

t ′
)1−αp

∼ f
(τ

2

)
e−Ĵ (kc)τ , (A.76)

it is also a function of τ only, and the fluctuation–dissipation theorem, X(t, t ′) ∼ 1, is
asymptotically obeyed.

In the ageing regime, from (A.67), one has

C(t, t ′) ∼ [(
t ′ + τ

)
t ′
] 2−γp

2

[
O

(
εt ′(

t ′ + τ
2

)γp

)
+ 2TcKp

∫ (1−ε)t ′+τ/2

τ
2

dy

yγp

(
t ′ + τ

2 − y
)2−γp

]

∼ [(
t ′ + τ

)
t ′
] 2−γp

2

[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

2TcKp(
γp − 1

) (
t ′ + τ

2

) (
2t ′

τ

)γp−1
]

. (A.77)

Restricting ε > 0 to be such that 1 
 ε(t ′ + τ/2) 
 (t ′/τ)γp−1(t ′ + τ/2)γp , one finds

C(t, t ′) ∼ 2KpTc2γp

γp − 1
t ′

1−γp x1− γp

2 (x − 1)1−γp

x + 1
. (A.78)

From equations (23) and (A.62), one calculates the response function,

R(t, t ′) ∼ f
(τ

2

)√
e2Ĵ (kc)t ′/t ′1−αp

e2Ĵ (kc)t /t1−αp

= f
(τ

2

)
e−Ĵ (kc)τ x

1−αp

2

∼ 2γpKpt ′
−γp

(x − 1)−γp x
1−αp

2 , (A.79)

and the fluctuation–dissipation ratio,

X(t, t ′) ∼ (γp − 1)(x + 1)2

(γpx + γp − 2)(x + 1) − 2(x − 1)
, (A.80)

which comes from equations (A.78) and (A.79).

Critical dynamics (d = d). In the stationary regime, 1 ∼ τ 
 t ′, for d = d, one
should proceed analogously as was done in the stationary regime of the case dc < d < d .
Therefore, by choosing ε > 0 such that 1 
 εt ′ 
 (t ′ + τ/2)γp/ ln(t ′ + τ/2), one finds, by
equations (A.65) and (A.72), that

C(t, t ′) ∼
√

ln(t ′ + τ) ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

2Tc

ln
(
t ′ + τ

2

)
×

∫ εt ′+τ/2

τ
2

dy f (y) e−2Ĵ (kc)y + 2TcKp

∫ (1−ε)t ′+τ/2

εt ′+τ/2

dy

yγp ln
(
t ′ + τ

2 − y
)
]
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=
√

ln(t ′ + τ) ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

2Tc

ln
(
t ′ + τ

2

)
×

(∫ ∞

τ
2

dy f (y) e−2Ĵ (kc)y −
∫ ∞

εt ′+τ/2

Kpdy

yγp

)
+ O

(
1

εt ′

∫ (1−ε)+τ/2

εt ′+τ/2

dy

yγp

)]
∼ Ceq,c(τ ). (A.81)

Furthermore, by equation (A.62), it can be shown that

R(t, t ′) ∼ f
(τ

2

)√
e2Ĵ (kc)t ′/ ln t ′

e2Ĵ (kc)t / ln (t ′ + τ)

= f
(τ

2

) e−Ĵ (kc)τ√
1 + ln(1+τ/t ′)

ln t ′

∼ f
(τ

2

)
e−Ĵ (kc)τ , (A.82)

ensuring that X(t, t ′) ∼ 1 in the stationary time scale.
In the ageing regime, 1 
 τ ∼ t ′, from (A.65) and (A.67), one finds

C(t, t ′) ∼
√

ln t ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+ 2TcKp

∫ (1−ε)t ′+τ/2

τ
2

dy

yγp ln
(
t ′ + τ

2 − y
)
]

=
√

ln t ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+ 2TcKp

∫ t ′

εt ′

dy(
t ′ + τ

2 − y
)γp ln y

]

=
√

ln t ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

2TcKpt ′

ln t ′

∫ 1

ε

du(
t ′ + τ

2 − t ′u
)γp

(
1 + ln u

ln t ′
)
]

, (A.83)

where the change of variable y = t ′u was performed in the last step. Since the condition
εt ′ � 1 is equivalent to 1 � − ln ε/ ln t ′ = | ln ε/ ln t ′|, one finds

C(t.t ′) ∼
√

ln t ln t ′
[
O

(
εt ′(

t ′ + τ
2

)γp

)
+

2TcKpt ′

ln t ′

∫ 1

ε

du(
t ′ + τ

2 − t ′u
)γp

]
, (A.84)

which leads to

C(t, t ′) ∼ 2γpTcKp

γp − 1
(t ′)1−γp

[
(x − 1)1−γp − (x + 1)1−γp

]√
1 +

ln x

ln t ′
. (A.85)

The calculation of the response function is simpler,

R(t, t ′) ∼ f
(τ

2

)
e−Ĵ (kc)τ

√
1 +

ln x

ln t ′

∼ Kp2γp t ′
−γp

(x − 1)−γp

√
1 +

ln x

ln t ′
. (A.86)

Therefore, the fluctuation–dissipation ratio is

X(t, t ′) ∼ 2(γp − 1) ln t ′

2(γp − 1)
[
1 +

(
x−1
x+1

)γp
]

ln t ′ − (x − 1)
[
1 − (

x−1
x+1

)γp−1 ] . (A.87)
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Critical dynamics (d > d). For d > d, by equations (A.65) and (A.67), the autocorrelation
is

C(t, t ′) ∼ O
(

εt ′(
t ′ + τ

2

)γp

)
+ 2Tc

∫ (1−ε)t ′+τ/2

τ
2

dy f (y) e−2Ĵ (kc)y

∼ Ceq,c(τ ), (A.88)

since Ceq,c(τ ) is O(1), which is much larger than other terms in the asymptotic limit.
The response function is obtained from equations (A.39) and (A.62):

R(t, t ′) ∼ f
(τ

2

)
e−Ĵ (kc)τ . (A.89)

The asymptotic expansions of the two-time functions in the stationary regime (for τ ∼ 1)
are given by equations (A.88) and (A.89). In this case, one also finds that X(t, t ′) ∼ 1. On the
other hand, in the ageing scenario, for τ � 1, using (A.67), these functions have the following
asymptotic behaviour:

C(t, t ′) ∼ O
(

εt ′(
t ′ + τ

2

)γp

)
+ 2TcKp

∫ (1−ε)t ′+τ/2

τ
2

dy

yγp

∼ 2γpTcKp

γp − 1
(t ′)1−γp [(x − 1)1−γp − (x + 1)1−γp ] (A.90)

and

R(t, t ′) ∼ 2γpKpτ−γp = 2γpKpt ′
−γp

(x − 1)−γp . (A.91)

In this situation, the fluctuation–dissipation ratio is violated with

X(t, t ′) ∼ 1

1 +
(

x−1
x+1

)γp
. (A.92)

Subcritical dynamics

As in the critical dynamics, the two characteristic time scales (stationary and aeging) are also
present.

In the stationary case, 1 ∼ τ 
 t ′, from equations (23), (A.65) and (A.66), one has

C(t, t ′) ∼ M4
eq

[(
t ′ + τ

)
t ′
] γp

2

[
1(

t ′ + τ
2

)γp
+

2T(
t ′ + τ

2

)γp

1

2TcM2
eq

+
2T

M4
eq

∫ (1−ε)t ′+τ/2

τ
2

dy f (y) e−2Ĵ (kc)y(
t ′ + τ

2 − y
)γp

]

∼ M2
eq

[(
t ′ + τ

)
t ′
] γp

2(
t ′ + τ

2

)γp

[
M2

eq +
T

Tc

+
2T

(
t ′ + τ

2

)γp

M2
eq

×
(∫ εt ′+τ/2

τ
2

dy f (y) e−2Ĵ (kc)y(
t ′ + τ

2

)γp
+
∫ (1−ε)t ′+τ/2

εt ′+τ/2

dy f (y) e−2Ĵ (kc)y(
t ′ + τ

2 − y
)γp

)]

∼ M2
eq

[
1 +

2T

M2
eq

Ceq,c(τ )

2Tc

+ O
(∫ (1−ε)t ′+τ/2

εt ′+τ/2

(
t ′ + τ

2

)γp dy

yγp

(
t ′ + τ

2 − y
)γp

)]

= M2
eq +

(
1 − M2

eq

)
Ceq,c(τ ) + O

((
t ′ + τ

2

εt ′

)γp
∫ (1−ε)t ′+τ/2

εt ′+τ/2

dy

yγp

)
, (A.93)
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where equation (A.59) was invoked. By choosing ε > 0 such that 1 
 (t ′)
γp

2γp−1 
 εt ′ 
 t ′,
one has

C(t, t ′) ∼ M2
eq +

(
1 − M2

eq

)
Ceq,c(τ ). (A.94)

Using equation (A.54), the response function, described by

R(t, t ′) ∼ f
(τ

2

)√
f (t ′)
f (t)

(A.95)

in both time scales, behaves as

R(t, t ′) ∼ f
(τ

2

)
e−Ĵ (kc)τ

(
1 +

τ

t ′
) γp

2 = f
(τ

2

)
e−Ĵ (kc)τ + O

( τ

t ′
)

(A.96)

in the stationary case. It is not difficult to see that in this case the fluctuation–dissipation
theorem is valid, with X(t, t ′) ∼ 1.

In the ageing regime, 1 
 τ ∼ t ′, from equations (23) and (A.54) in (A.61), the
autocorrelation can be written as

C(t, t ′) ∼ M4
eq

[(
t ′ + τ

)
t ′
] γ2

2

[
1(

t ′ + τ
2

)γp
+

2T(
t ′ + τ

2

)γp

1

2TcM2
eq

+
2T Kp

M4
eq

∫ (1−ε)t+τ/2

τ
2

dy

yγp

(
t ′ + τ

2 − y
)γp

]

= M2
eq

[(
t ′ + τ

)
t ′
] γ2

2

[
1(

t ′ + τ
2

)γp
+ O

(
1

(εt ′)γp

∫ (1−ε)t ′+τ/2

τ
2

dy

yγp

)]
. (A.97)

Taking ε > 0 such that (t ′ + τ/2)τ (1−γp)/γp 
 εt ′ 
 t ′, one has

C(t, t ′) ∼ M2
eq

[
4x

(x + 1)2

] γp

2

. (A.98)

The calculation of the response function is simpler:

R(t, t ′) ∼ KpeĴ (kc)τ(
τ
2

)γp
e−Ĵ (kc)τ x

γp

2 = Kp2γp t ′
−γp

x
γp

2 (x − 1)−γp . (A.99)

From equations (A.98) and (A.99), the fluctuation–dissipation ratio is given by the
asymptotic expression

X(t, t ′) ∼ 2T Kp

γpM2
eq

t ′
1−γp

(
x + 1

x − 1

)1+γp

. (A.100)

Technical note

From equations (A.61) and (17), with t → t ′ + τ/2, one finds another form for the
autocorrelation,

C(t, t ′) = 1√
ψ(t)ψ(t ′)

[
ψ

(
t ′ +

τ

2

)
− 2T

∫ t ′+ τ
2

t ′
dy f

(
t ′ +

τ

2
− y

)
ψ(y)

]

= 1√
ψ(t)ψ(t ′)

[
ψ

(
t ′ +

τ

2

)
− 2T

∫ τ
2

0
dy f (y)ψ

(
t ′ +

τ

2
− y

)]
. (A.101)

It is possible to use this expression for calculating the asymptotic forms of autocorrelation.
One then recovers the same asymptotic results that have already been reported, with the
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exception a discrepancy in the critical dynamics for d > d, which will not display any ageing
behaviour. Equation (A.101), however, involves strongly varying terms, which may even
change sign, and whose asymptotic behaviour may turn out to be much more difficult to
analyse.
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